The main types of PV module technologies, about 95% of the global market, are:

  • Monocrystalline silicon modules
  • Polycrystalline silicon modules

Polycrystalline silicon modules are slightly less efficient than monocrystalline silicon modules. This means that polycrystalline silicon modules take up more surface area on a roof or require a larger mounting structure than monocrystalline silicon modules to produce the same amount of electricity.

Both types are manufactured to high international standards and are suitable for most applications. Typical warranties guarantee that after 20/25 years of use, the modules will produce 80% of their original rated power output.

Approximate comparison of the efficiencies of different crystalline silicon PV modules, and the surface area needed for 1 kWp of PV module array. Lower efficiency requires a larger module surface area to achieve the same total power output. EFG polycrystalline modules are the more efficient type of polycrystalline module.

PERC (passivated emitter and rear contact) PV modules are a more efficient type of mono crystalline PV technology. Other technologies include thin film photovoltaics, where photovoltaic active semiconductor compounds like cadmium telluride are sputtered on flat glass.  Lower efficiencies and high degradation have prevented thin film PV from gaining significant market share.

ان الانواع الرئيسية لتكنولوجيا الواح الطاقة الشمسية (٩٥٪ تقريبا من السوق العالمي) هي :

  • الواح سيليكون المونو كريستالين (Mono-Crystalline)
  • الواح سيليكون البولي كريستالين (Poly-Crystalline)

ان الالواح السيليكون من نوع البولي كرستالين تكون اقل كفاءة نوعا ما من الواح السيليكون من نوع المونو كريستالين. وهذا يعني ان الالواح المصنوعة من سيليكون البولي كرستالين تحتاج مساحة سطحية اكبر من الواح سيليكون المونوكريستالين لتنتج نفس الكمية من الطاقة الكهربائية٫

يتم تصنيع كلتا النوعيتين حسب معايير عالمية عالية و كلتاهما مناسبتان لاغلب التطبيقات. اغلب الضمانات تنص ان بعد 20-25 سنة من الاستخدام سوف تقوم الالواح بانتاج 80% من الطاقة التي كانت قادرة على انتاجها في البداية.

مقارنة تقريبية لكفاءة انواع مختلفة من الواح الطاقة الشمسية المصنوعة من مادة سيليكون الكريستالين والمساحة السطحية المطلوبة لمصفوفة الواح شمسية بقدرة 1kWp. كلما ّقلت الكفاءة كلما زادت مساحة الالواح المطلوبة للحصول على نفس مقدار الطاقة. تكون كفاءة الالواح المصنوعة من مادة البولي كريستالين من نوع (EFG) اعلى من الالواح المصنوعة من مادة البولي كريستالين.

ان الالواح الشمسية من نوع بيرك “PERC” (تخميل الباعث والخلية الخلفية) هي انوع من الالواح ذات مستوى كفاءة اعلى مقارنة بالواح الطاقة الكهروضوئية من نوع سيليكون الكريستالين. اما الأنواع الأخرى من الواح الطاقة الشمسية فتكون اقل كفاءة من الالواح المصنوعة من مادة سيليكون الكريستالين, ولهذا تحتاج مساحة اكبر للتركيب. وهذه الأنواع تتضمن السيليكون غير المتبلور (a-Si), الكاديوم توليرايد (Cdte) و سيلينيد النحاس انديوم غاليوم (CIGS). قد تكون أسعار هذا النوع من الالواح اقل سعرا الا انه المتطلبات الخاصة في التركيب وإعادة التدوير لهذه الالواح يحدد استخدامها في المنظومات العملاقة من النوع المتصل بالشبكة الكهربائية (On-grid)

يتكون لوح الطاقة الشمسية الكهروضوئية من مجموعة من الخلايا مربوطة على التوالي و/او على التوازي للوصول الى القدرة الكهربائية المطلوبة. ترتبط مجموعة الالواح الشمسية الكهروضوئية لتشكل المصفوفات…

تتكون الالواح الشمسية بدورها من مجموعة من الخلايا الشمسية المربوطة كهربائيا مع بعضها.

يتم كبس هذه الخلايا بين طبقتين من مادة تغليف شفافه ورقيقة ، يتم وضع هذه المادة فوق صفيحة عاكس للضوء تصنع عادة من مادة بوليفينيل و يتم غلقها باحكام باستخدام غطاء زجاجي داخل اطار من الالمنيوم. تعمل هذه الطبقات العازلة على حماية الخلية الشمسية من البيئة المحيطة و للتاكد من عدم نفاذ الرطوبة الى اللوح, والذي يعد احد اكثر الاسباب شيوعا والتي تتسبب التراجع في مستوى أداء اللوح الشمسي. اما التوصيلات الكهربائية فموجودة خلف اللوح الشمسي في المنطقة التي يتم فيها ربط الاسلاك.

عندما يتعرض سطح الخلية الشمسية لأشعة الشمس، تسقط الفوتونات الضوئية على الخلية الشمسية حيث يتم امتصاصها فتنتقل الطاقة الصادرة من هذه الفوتونات الى الالكترونات في داخل الخلية مما يتسبب بحركتها. عندما تبدأ هذه الإلكترونات في الحركة داخل السلك المعدني يتم توليد الطاقة الكهربائية (التيار المستمر).

A photovoltaic (PV) module is composed of solar cells. These solar cells are connected in series and/or parallel to obtain the desired electric power output from the module.

PV module arrays are made up of several PV modules, which themselves are composed of multiple solar cells.

In a module, the solar cells are electrically connected and placed between two very thin transparent layers of encapsulation material. This material is then placed on top of a reflective backing sheet (commonly made from polyvinyl fluoride), and sealed with a glass cover in an aluminium frame. These layers of material protect the solar cells from the environment and ensure that moisture does not enter the module. In lower quality PV modules water may penetrate the layers, which is one of the most common causes of module degradation. Electrical output contacts are in a junction box at the back of the module where the cables are attached.

When the surface of a solar cell is exposed to light, photons fall onto the cell and are absorbed. The energy from these photons is transferred to the electrons in the cell, causing them to become mobile. When these electrons are channelled together to run through a metal cable, they produce direct current (DC) electricity.

A major application for small off-grid PV systems is supplying power for outdoor equipment, also in urban areas, such as:

  • Sign lighting
  • Parking meters
  • Bus shelter lights
  • Outside area lighting
  • Environmental monitoring equipment (air quality, traffic flows, etc.)
  • Other relatively low-energy-consuming equipment away from the electric grid

Installing these low-power systems can cost less than connecting them to the grid, which might involve digging up roads and laying underground cables. These systems are usually sold in kits and are relatively easy to install. Most off-grid systems of this type consist of a PV module(s), charge controller and battery.

Solar powered parking meter.

 

In systems providing outdoor lighting, the lamps are usually LEDs, which consume little energy and have very long working lives. Ideally the battery should be in an enclosure under the ground so it does not overheat. If batteries get hot, their working lives are considerably shortened. However, as the danger of theft and flooding may prevent this, most systems have a battery enclosure at the top under the PV module. The battery should also be appropriate to the temperatures it will be subjected to.

Solar powered road sign.

Outside area lighting.

Most off-grid systems of this type consist of a PV module(s), charge controller, battery and the load.

 

All these systems require a maintenance plan to ensure long working lives. The main maintenance task is regular battery replacement. Dust on PV modules might also be an issue in some regions.

Off-grid solar electric systems can also be used to provide drinking water by:

  • Water purification
  • Water desalination

A very wide range of products of different sizes is available. Many companies supply bespoke solutions for water purification and desalination, especially for smaller applications.

PV-powered UV water purification system. Water is passed through a pipe where it is exposed to ultraviolet radiation. Power for the pump and the UV generator is provided by the PV modules. This can be either stand-alone or integrated into a larger PV system.

PV-powered desalination plant using reverse osmosis (RO) semi-permeable membranes to purify salt water. Power for the pumps is provided by the PV modules. Another similar method is membrane distillation (MD).

Water quality can also be assured by PV-powered monitoring systems. These generally require very little power and are ideal for locations away from the electric grid.

Solar thermal alternatives are also available for water purification and desalination. These use the heat from the sun as a power source.

Solar pumping systems which pump water from rivers, lakes and reservoirs (but also some wells) use surface pumps which float on the surface of the water or just under it. The water is stored in a tank or can be used directly.

These types of system are usually used to provide water supplies for livestock or irrigation. They are efficient, robust and durable, with very low and easy maintenance. Systems are available in a range of sizes. However, pumps may be subjected to environmental damage (floods, freezing, etc.), theft and vandalism.

Irrigation systems for solar pumps need to be efficient and not waste water. Drip irrigation, which feeds water directly and efficiently to crops, is often used. This is an issue which needs to be considered when a diesel pumping system is being replaced with a solar water pumping system.

Solar water pumping system with a pump that floats on the surface of the water or just below the surface.

Solar pumping systems which pump water from deep wells or boreholes use submersible pumps which are installed in the well or borehole. They are efficient, robust and durable, and require very low maintenance.

These types of system are usually used to provide water for human consumption or water supplies for livestock. Pumped water can also be used for irrigation, depending on water requirements and the value of the crops.

Solar water pumping system with submerged pump under the water in borehole or well.

Most of the work and cost will be drilling and preparing the well or borehole (if it does not already exist). Knowledge of hydrology is required when designing and sizing solar pumping systems for large borehole pumps, so it is recommended to purchase systems from companies which specialise in this field.

Selecting and sizing a solar pump depends on the daily water requirement, the height the water needs to be pumped (the ‘head’) and the level of solar irradiation at the location.

Some typical daily water requirements include:

  • People:………………………..280 litres per person
  • Milk cow: ……………………133 litres per milk cow
  • Cow & calf: ……………….. 38-144 litres
  • Horse, head of cattle: … 38-76 litres per animal
  • Sheep: ………………………. 8 litres per sheep
  • Chicken: ……………………. 15 litres per chicken
  • Irrigation: …………………. highly variable depending on crop, irrigation system and

weather conditions.

Basic steps required when selecting / sizing a solar pumping system. Needless to say, the details are more complex and most companies use sizing software, which is often supplied by system manufacturers.

Water is a universal need and pumping is a major energy issue, especially in regions where there is no grid or where electricity is expensive or unreliable. Solar pumping provides access to water in a clean and quiet way, in remote and hard to reach places, and can be a replacement for diesel pumps. Demand for water is often greatest when solar irradiation levels are high, which makes PV an ideal power source.

Water is pumped by the solar system when the sun shines, and is usually stored in a tank and used when required. Pumping systems do not have batteries.

The main components are:

  • PV modules
  • Pump controller (for either a DC pump or an AC pump)
  • Tank to store water

The main applications are:

  • Drinking water for homes and communities
  • Water for livestock
  • Water for crop irrigation

Complete systems (PV modules, controller, pump) are usually purchased from a single supplier.

Typical solar pumping system.

The PV modules produce electricity to drive the pump. The controller ensures that this is done efficiently. The water is pumped to a tank for later use, but can also be used directly, for example in irrigation systems.

 

Diesel and grid-connected electric pumping systems are usually designed to pump a large quantity of water over a short time period. Solar pumps pump the water more slowly but over a longer time period. This needs to be taken into account when selecting/designing a water supply system using solar pumping.

Solar water pumping can also be used in water treatment plants, for swimming pools, and in many other situations.